

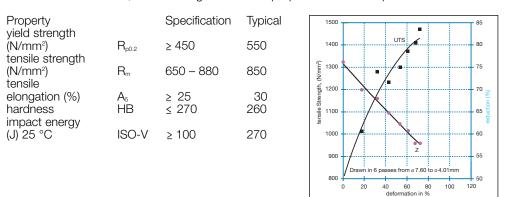
## Stainless duplex austenitic-ferritic, chromium nickel molybdenum steel

**C** max. 0.03 **Cr** 21.00 – 23.00 **Ni** 4.50 – 6.50 **Mo** 2.50 – 3.50 **N** 0.12 – 0.22

**General comments** 

1.4462 belongs to the family of dulpex stainless steels. This steel is characterised by its excellent combination of corrosion resistance, comparable to that of the austenitic grade 1.4404, and strength, about 150 % higher than that of the 1.4404 austenitic grades. The use of duplex stainless steels, especially 1.4462 are gaining popularity due to their unique combination of excellent corrosion resistance, resistance to stress corrosion cracking and high tensile and yield strengths. As a result of its high strength, this steel is ideally suited to the constructional industry. The relatively lower nickel content, relative to the conventional austenitic grades, also makes 1.4462 an interesting alternative from an economic point of view.

| Relevant current<br>and obsolete<br>standards    | EN 10088-3<br>ASTM<br>BS<br>JIS<br>AFNOR<br>DIN 17440<br>SIS<br>UNS<br>VD-TÜV-Blatt 418<br>FALC 223                                                                                                                                     | 1.4462<br>A182F51<br>318S13<br>329J3L<br>Z3CND 22-05 Az<br>1.4462<br>2377<br>S31803<br>1.4462<br>1.4462             | X2CrNiMoN22-5-3 |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| Special grades<br>for particular<br>applications | welding wire                                                                                                                                                                                                                            | Novonit® 4462                                                                                                       |                 |  |  |
| General properties                               | corrosion resistance<br>mechanical properties<br>forgeability<br>weldability<br>machinability                                                                                                                                           | excellent<br>excellent<br>average<br>good<br>poor                                                                   |                 |  |  |
| Special properties                               | can be used to temperatures of 350 °C<br>ferromagnetic grade<br>can also be used for cryogenic applications up to -100 °C                                                                                                               |                                                                                                                     |                 |  |  |
| Physical properties                              | density (kg/dm <sup>3</sup> )<br>electrical resistivity at 20 °C (Ω mm <sup>2</sup> /m)<br>magnetizability<br>thermal conductivity at 20 °C (W/m K)<br>specific heat capacity at 20 °C (J/kg K)<br>thermal expansion (K <sup>-1</sup> ) | 7.80<br>0.79<br>possible<br>14<br>500<br>20 - 100 °C: 13.0 x 10<br>20 - 200 °C: 13.5 x 10<br>20 - 300 °C: 14.0 x 10 | 6               |  |  |
| Typical applications                             | construction industry<br>chemical industry<br>petro-chemical industry<br>electronic equipment<br>food and beverage industries<br>mechanical engineering<br>off-shore structures and ship building<br>Note: available from stock         |                                                                                                                     |                 |  |  |
|                                                  | supplied in accordance with the Z-30.<br>3-6 building regulation                                                                                                                                                                        |                                                                                                                     |                 |  |  |
| Processing<br>properties                         | automated machining<br>machinable<br>hammer and die forging<br>cold forming<br>cold heading<br>suited to polishing                                                                                                                      | no<br>yes<br>yes<br>in some distances<br>yes                                                                        |                 |  |  |
| Conditions                                       | solution annealed and quenched                                                                                                                                                                                                          |                                                                                                                     |                 |  |  |
| Demand tendency                                  | sharply rising                                                                                                                                                                                                                          |                                                                                                                     |                 |  |  |






## C max. 0.03 Cr 21.00 – 23.00 Ni 4.50 – 6.50 Mo 2.50 – 3.50 N 0.12 – 0.22

Corrosion resistance (PRE = 30.85 – 38.07) Superb corrosion resistance in chloride containing and acid environments, especially in phosphoric and organic acids. Corrosion resistance is superior to that of 1.4404. As a result of the duplex structure 1.4462 exhibits superior corrosion resistance to the austenitic grades in that it is not susceptible to intergranular corrosion and also in that this grade of steel is exceptionally resistant to stress corrosion cracking. This stainless steel is also resistant to pitting corrosion, which together with its resistance to stress corrosion cracking accounts for its extensive use in off-shore applications.


Heat treatment and mechanical properties Optimal corrosion and mechanical properties can be obtained by solution annealing the steel at temperatures between 1050 °C und 1100 °C followed by rapid cooling in air or water. In this condition, the following mechanical properties can be expected:



A typical work hardening curve for 1.4016

The mechanical properties (d  $\geq$  160 mm) have to be agreed on for thicker dimensions, or the delivered product is based on the values given.

Elevated temperature properties Susceptibility to both 475 and sigma phase embrittlement limit the use of this material to temperatures below 350  $^\circ\mathrm{C}.$ 



Minimum tensile properties at various temperatures, shown in the diagramm, are specified in the EN 10088-3.

- Welding Like all duplex stainless steels, care must be taken when welding 1.4462. The optimal enveope of welding parameters is small and as such deviations outside these optimal limits could lead to poor welds. Within the prescribed welding parameters, weldability is good. The use of slightly higher heat inputs (1 3 kJ/mm), during welding is preferable since this results in a better phase distribution in the weld zone, which in turn results in improved mechanical properties of the weldment.
- **Forging** Care should be taken when forging since 1.4462 is susceptible to problems when subjected to shock loading at elevated temperatures. Gradual heating to a temperature of 1200 °C is recommended to allow forging to take place at temperatures between 1200 °C 900 °C. Forging should be followed by air cooling.

**Machining** Like all duplex stainless steels, 1.4462 is only machinable with some difficulty. The factors responsible for this are the high strength and duplex structure. The optimal cutting/machining parameters lie within a much narrower band than is the case with the austenitic grades. Coated hard metal cutting/machining tools or the use of Cermets are recommended for the machining of 1.4462. The following machining parameters can be used as a guideline.

|                                            | Depth of cut (mm) | 6   | 3   | 1   |
|--------------------------------------------|-------------------|-----|-----|-----|
|                                            | Feed rate (mm/r)  | 0.5 | 0.4 | 0.2 |
| Solution annealed                          | Cutting speed     |     |     |     |
| R <sub>m</sub> 660 – 750 N/mm <sup>2</sup> | (m/min)           | 110 | 140 | 175 |

DEUTSCHE EDELSTAHLWERKE GMBH Auestraße 4 58452 Witten www.dew-stahl.com

 Tel.
 +49 2302 29 0

 Fax
 +49 2302 29 4000

 stainless@dew-stahl.com