UGIMA® 4435 ICH

Chemical analysis (%)

С	Si	Mn	Ni	Cr	Мо	N	Р	S
≤ 0.03	≤ 1,0	≤ 2,0	12,5 – 14,0	17,0 – 19,0	2,5 – 3,0	≤ 0,11	≤ 0.045	≤ 0,030

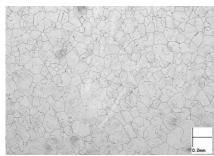
27-04-2012 - REV00

General presentation

UGIMA® 4435 ICH is an austenitic stainless steel with high molybdenum content and a specific metallurgy for improved behaviour during machining. Its composition provides it with very good corrosion resistance and is perfectly suited for

prolonged contact with the skin. It also offers excellent machinability, allowing significant productivity gains in processing.

Classification


Austenitic stainless steel.


Designation

Europe	USA	Japan	
EN 10088-3	ASTM	JIS	
1.4435	316L00109	SUS316L	
USA	France	Germany	Switzerland
AISI	AFNOR	DIN	Basler Norm BN2
316 L00109	X2CrNiMo18 14 3	1.4435	1.4435

Microstructure

The chemical composition of UGIMA® 4435 ICH is optimised to ensure primary ferritic solidification limiting hot workability problems and risks of crack formation at high temperature during welding, while providing it with a structure almost 100% austenitic at room temperature.

Transverse microstructure on Ø 20 mm

Grain size as per ASTM E-112: ≥ 5 (≥ 4 if need of guarantee of residual ferrite < 0.5%)

Swiss Steel Group

UGIMA® 4435 ICH

Chemical analysis (%)

С	Si	Mn	Ni	Cr	Мо	N	Р	S
≤ 0.03	≤ 1,0	≤ 2,0	12,5 – 14,0	17,0 – 19,0	2,5 – 3,0	≤ 0,11	≤ 0.045	≤ 0,030

27-04-2012 - REV00

Mechanical properties Tensile data

State	Temperature T	Yield Stress YS	Ultimate Tensile Strength UTS	Elongation E
	(°C)	(MPa)	(MPa)	(%)
Solution annealed	20	≥ 200	500-700	≥ 40
	100	≥165		
	200	≥137		
	300	≥118		
Ø ≤ 16 mm solution annealed + cold-worked by drawing	20	≥ 400	600-950	≥ 25
Ø ≥ 16 mm solution annealed + cold-worked by drawing	20	≥ 235	500-850	≥ 30
Ø ≤ 16 mm solution annealed + cold-worked by drawing Ø ≥ 16 mm solution annealed + cold-worked by drawing				

The drawing (cold working) operation helps enhance the metal's mechanical properties.

Impact strength data

Temperature	Absorbed energy
Т	KV
(°C)	(J)
20	≥ 100

Hardness data

Temperature	Brinell	Vickers
(°C)	(HB)	(HV)
20	144 - 202	160 - 205

Propriétés physiques

Tempera-ture	Density	Modulus of elasticity	Thermal conductivity	Coefficient of expansion	Electrical resistivity	Specific heat	Magnetism
(°C)	(kg/dm³)	(GPa)	(W.m ⁻¹ .K ⁻¹)	(10 ⁻⁶ .K ⁻¹)	(μΩ.mm)	(J.kg ⁻¹ .K ⁻¹)	
20	8,0	200	15	-	0.75	500	no
100		194		16.0			
200		186		16.5		_	
300		179		17.0			
400		172		17.5			
500		165	_	18.0			

Corrosion resistance Uniform corrosion

Its higher molybdenum content provides it, in reducing mineral acids, with better uniform corrosion resistance than the conventional austenitics 1.4307 (304L) and 1.4404 (316L).

Swiss Steel Group

UGIMA® 4435 ICH

Chemical analysis (%)

С	Si	Mn	Ni	Cr	Мо	N	Р	S
≤ 0.03	≤ 1,0	≤ 2,0	12,5 – 14,0	17,0 – 19,0	2,5 – 3,0	≤ 0,11	≤ 0.045	≤ 0,030

27-04-2012 - REV00

Localized corrosion

- Pitting corrosion and crevice corrosion

It has very good corrosion resistance behaviour for a great majority of natural exposures (rural, urban and industrial). This grade, with high molybdenum content, offers among the best pitting and crevice corrosion resistance of the austenitic family.

Its very good corrosion resistance behaviour means it easily complies with the EN1811 standard relating to nickel release.

- Intergranular corrosion

Due to its low carbon content, this grade resists intergranular corrosion after welding and after sensitizing heat treatment as specified in the standards (ASTM A262-75 Practice E; DIN EN ISO 3651-2).

Hot working Forging

The grade can be hot-worked at between 900°C and 1250°C and then cooled rapidly, in water or air. Hot forming is generally followed by a solution annealing or quenching (see recommendations in the corresponding section).

Cold working Wire drawing - Shaping

UGIMA[®] 4435 ICH has good cold forming capability. Its high cold work hardening compared with non-austenitic grades induces the use of appropriate tools. Cold working can make the grade very slightly magnetisable through the formation of strain-induced martensite.

Bending - Forming

Good bending and forming capability.

Swiss Steel Group

UGIMA® 4435 ICH

Chemical analysis (%)

С	Si	Mn	Ni	Cr	Мо	N	Р	S
≤ 0.03	≤ 1,0	≤ 2,0	12,5 – 14,0	17,0 – 19,0	2,5 – 3,0	≤ 0,11	≤ 0.045	≤ 0,030

27-04-2012 - REV00

Machinability

UGIMA® 4435 ICH undergoes the UGIMA® process for control of its oxide inclusion population, which provides it with an optimal machinability level for a 1.4435 steel without detracting from its other properties (corrosion resistance, weldability, etc.).

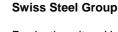
Accordingly, the machining productivity of UGIMA® 4435 ICH can be increased by 10% to 15% by comparison with a standard 1.4435 steel. This effect is optimal when this grade is machined on machines and with tools enabling high cutting conditions to be achieved (modern machines and coated carbide tools).

Welding

UGIMA® 4435 ICH can be resistance welded (spot or seam welding) by any type of arc process (MIG, TIG, submerged arc, covered electrode), by laser, electron beam, etc.

UGIMA® 4435 ICH is balanced to be on the boundary of primary ferritic solidification in order to ensure a minimum of residual ferrite in the welding region while limiting its risk of crack formation at high temperature during arc welding; in laser welding, the risk of crack formation at high temperature is greater than with arc welding, and the welding parameters should be adjusted as well as possible on a case by case basis to limit this risk.

Where a filler wire is used to weld UGIMA® 4435 ICH to itself, preferably choose an ER316L(Si) – 1.4430 wire.


The protection gases in arc welding should preferably be:

- In MIG: Ar (+ possibly He) + 2% to 3% O₂ or CO₂
- In TIG: Ar (+ possibly He)

No preheating or post-welding heat treatment is required. Interpass temperatures not exceeding 150°C should be complied with.

Heat treatment Solution treatment (solution annealing)

The solution annealing treatment can ensure optimal corrosion resistance properties. It should be performed at a temperature ranging between 1050°C and 1120°C and followed by rapid cooling in water or air (for products of small cross section).

UGIMA® 4435 ICH

Chemical analysis (%)

С	Si	Mn	Ni	Cr	Мо	N	Р	S
≤ 0.03	≤ 1,0	≤ 2,0	12,5 – 14,0	17,0 – 19,0	2,5 – 3,0	≤ 0,11	≤ 0.045	≤ 0,030

27-04-2012 - REV00

Surface treatment		
Туре	Medium	Comments

Pickling	6 – 25% HNO ₃ + 0.5 – 8% HF	In the annealed state only and at high temperature
Passivation	20 – 50% HNO ₃	At high temperature

Available products

Product	Shape	Finish	Tolerance	Dimensions
Bar	Round	Rolled & descaled	k13	Ø 13 to 130 mm
		Turned	10 + 11	Ø 22 to 130 mm
		Ground	7 + 8 + 9 + options	Ø 2 to 130 mm
		Drawn	9	Ø 2 to 30 mm
		Black bar	+/- 1% of ø	Ø 23 to 135 mm
	Hexagonal	Drawn	10 + 11	Hex. 3 to 55 mm
Wire Rod	Round	Rolled		Ø 5 to 32 mm
		Rolled & pickled		Ø 5 to 32 mm
	Hexagonal	Rolled & pickled		Hex. 12.4 to 28 mm
Billet	Square	 -		50 to 120 mm

Other possible options. Please consult us.

Applications

- Watchmaking
- Pharmaceuticals

Swiss Steel Group